Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 37(6): e22975, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37159340

RESUMO

Intestinal epithelial stem cells (ISCs) are responsible for intestinal epithelial barrier renewal; thereby, ISCs play a critical role in intestinal pathophysiology research. While transgenic ISC reporter mice are available, advanced translational studies lack a large animal model. This study validates ISC isolation in a new porcine Leucine Rich Repeat Containing G Protein-Coupled Receptor 5 (LGR5) reporter line and demonstrates the use of these pigs as a novel colorectal cancer (CRC) model. We applied histology, immunofluorescence, fluorescence-activated cell sorting, flow cytometry, gene expression quantification, and 3D organoid cultures to whole tissue and single cells from the duodenum, jejunum, ileum, and colon of LGR5-H2B-GFP and wild-type pigs. Ileum and colon LGR5-H2B-GFP, healthy human, and murine biopsies were compared by mRNA fluorescent in situ hybridization (FISH). To model CRC, adenomatous polyposis coli (APC) mutation was induced by CRISPR/Cas9 editing in porcine LGR5-H2B-GFP colonoids. Crypt-base, green fluorescent protein (GFP) expressing cells co-localized with ISC biomarkers. LGR5-H2B-GFPhi cells had significantly higher LGR5 expression (p < .01) and enteroid forming efficiency (p < .0001) compared with LGR5-H2B-GFPmed/lo/neg cells. Using FISH, similar LGR5, OLFM4, HOPX, LYZ, and SOX9 expression was identified between human and LGR5-H2B-GFP pig crypt-base cells. LGR5-H2B-GFP/APCnull colonoids had cystic growth in WNT/R-spondin-depleted media and significantly upregulated WNT/ß-catenin target gene expression (p < .05). LGR5+ ISCs are reproducibly isolated in LGR5-H2B-GFP pigs and used to model CRC in an organoid platform. The known anatomical and physiologic similarities between pig and human, and those shown by crypt-base FISH, underscore the significance of this novel LGR5-H2B-GFP pig to translational ISC research.


Assuntos
Intestinos , Humanos , Suínos , Animais , Camundongos , Hibridização in Situ Fluorescente , Células-Tronco , Íleo , Colo , Proteínas de Fluorescência Verde/genética , Receptores Acoplados a Proteínas G/genética
2.
Front Vet Sci ; 9: 965316, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311661

RESUMO

Mice with severe combined immunodeficiency are commonly used as hosts of human cells. Size, longevity, and physiology, however, limit the extent to which immunodeficient mice can model human systems. To address these limitations, we generated RAG2 -/- IL2RG y/- immunodeficient pigs and demonstrate successful engraftment of SLA mismatched allogeneic D42 fetal liver cells, tagged with pH2B-eGFP, and human CD34+ hematopoietic stem cells after in utero cell transplantation. Following intrauterine injection at day 42-45 of gestation, fetuses were allowed to gestate to term and analyzed postnatally for the presence of pig (allogeneic) and human (xenogeneic) B cells, T-cells and NK cells in peripheral blood and other lymphoid tissues. Engraftment of allogeneic hematopoietic cells was detected based on co-expression of pH2B-eGFP and various markers of differentiation. Analysis of spleen revealed robust generation and engraftment of pH2B-eGFP mature B cells (and IgH recombination) and mature T-cells (and TCR-ß recombination), T helper (CD3+CD4+) and T cytotoxic (CD3+CD8+) cells. The thymus revealed engraftment of pH2B-eGFP double negative precursors (CD4-CD8-) as well as double positive (CD4+, CD8+) precursors and single positive T-cells. After intrauterine administration of human CD34+ hematopoietic stem cells, analysis of peripheral blood and lymphoid tissues revealed the presence of human T-cells (CD3+CD4+ and CD3+CD8+) but no detectable B cells or NK cells. The frequency of human CD45+ cells in the circulation decreased rapidly and were undetectable within 2 weeks of age. The frequency of human CD45+ cells in the spleen also decreased rapidly, becoming undetectable at 3 weeks. In contrast, human CD45+CD3+ T-cells comprised >70% of cells in the pig thymus at birth and persisted at the same frequency at 3 weeks. Most human CD3+ cells in the pig's thymus expressed CD4 or CD8, but few cells were double positive (CD4+ CD8+). In addition, human CD3+ cells in the pig thymus contained human T-cell excision circles (TREC), suggesting de novo development. Our data shows that the pig thymus provides a microenvironment conducive to engraftment, survival and development of human T-cells and provide evidence that the developing T-cell compartment can be populated to a significant extent by human cells in large animals.

3.
Tissue Eng Part A ; 28(19-20): 833-844, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35925753

RESUMO

Current cellular hydrogel-based skin grafts composed of human dermal fibroblasts and a hydrogel scaffold tend to minimize contraction of full-thickness skin wounds and support skin regeneration. However, there has been no comparison between the sources of the dermal fibroblast used. Products using human adult or neonatal foreskin dermal fibroblasts are often expanded in vitro and used after multiple passages without a clear understanding of the effects of this initial production step on the quality and reproducibility of the cellular behavior. Based on the known effects of 2D tissue culture expansion on cellular proliferation and gene expression, we hypothesized that differences in donor age and time in culture may influence cellular properties and contractile behavior in a fibroblast-populated collagen matrix. Using porcine skin as a model based on its similarity to human skin in structure and wound healing properties, we isolated porcine dermal fibroblasts of three different donor ages for use in a 2D proliferation assay and in a 3D cell-populated collagen matrix contractility assay. In 2D cell culture, doubling time remained relatively consistent between all age groups from passage 1 to 6. In the contractility assays, fetal and neonatal groups contracted faster and generated more contractile force than the adult group at passage 1 in vitro. However, after five passages in culture, there was no difference in contractility between ages. These results show how cellular responses in a hydrogel scaffold differ based on donor age and time in culture in vitro, and suggest that consistency in the cellular component of bioengineered skin products could be beneficial in the biomanufacturing of consistent, reliable skin grafts and graft in vivo models. Future research and therapies using bioengineered skin grafts should consider how results may vary based on donor age and time in culture before seeding. Impact statement Little is known about the impact of donor cell age and time in culture on the contraction of cellular, hydrogel-based skin grafts. These results show how cellular phenotypes of porcine fibroblasts differ based on donor age and time in culture. This information is beneficial when addressing important inconsistencies in biomanufacturing of bioengineered skin grafts and in vitro models. These findings are relevant to research and therapies using bioengineered skin graft models and the results can be used to increase reproducibility and consistency during the production of bioengineered skin constructs. The information from this study can be extrapolated to future in vivo studies using human dermal fibroblasts in an in vivo model to help determine the best donor age and time in culture for optimal wound healing outcomes or more reproducible in vitro testing constructs.


Assuntos
Hidrogéis , Cicatrização , Adulto , Recém-Nascido , Humanos , Suínos , Animais , Hidrogéis/farmacologia , Reprodutibilidade dos Testes , Colágeno/química , Fibroblastos
4.
Sci Rep ; 12(1): 9104, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35650234

RESUMO

Hair follicle stem cells are key for driving growth and homeostasis of the hair follicle niche, have remarkable regenerative capacity throughout hair cycling, and display fate plasticity during cutaneous wound healing. Due to the need for a transgenic reporter, essentially all observations related to LGR5-expressing hair follicle stem cells have been generated using transgenic mice, which have significant differences in anatomy and physiology from the human. Using a transgenic pig model, a widely accepted model for human skin and human skin repair, we demonstrate that LGR5 is a marker of hair follicle stem cells across species in homeostasis and development. We also report the strong similarities and important differences in expression patterns, gene expression profiles, and developmental processes between species. This information is important for understanding the fundamental differences and similarities across species, and ultimately improving human hair follicle regeneration, cutaneous wound healing, and skin cancer treatment.


Assuntos
Folículo Piloso , Células-Tronco , Animais , Animais Geneticamente Modificados , Biomarcadores/metabolismo , Folículo Piloso/metabolismo , Humanos , Morfogênese , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Pele , Células-Tronco/metabolismo , Suínos
5.
ACS Biomater Sci Eng ; 7(11): 5175-5188, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34597013

RESUMO

Gelatin methacryloyl (GelMA) hydrogels have emerged as promising and versatile biomaterial matrices with applications spanning drug delivery, disease modeling, and tissue engineering and regenerative medicine. GelMA exhibits reversible thermal cross-linking at temperatures below 37 °C due to the entanglement of constitutive polymeric chains, and subsequent ultraviolet (UV) photo-cross-linking can covalently bind neighboring chains to create irreversibly cross-linked hydrogels. However, how these cross-linking modalities interact and can be modulated during biofabrication to control the structural and functional characteristics of this versatile biomaterial is not well explored yet. Accordingly, this work characterizes the effects of synergistic thermal and photo-cross-linking as a function of GelMA solution temperature and UV photo-cross-linking duration during biofabrication on the hydrogels' stiffness, microstructure, proteolytic degradation, and responses of NIH 3T3 and human adipose-derived stem cells (hASC). Smaller pore size, lower degradation rate, and increased stiffness are reported in hydrogels processed at lower temperature or prolonged UV exposure. In hydrogels with low stiffness, the cells were found to shear the matrix and cluster into microspheroids, while poor cell attachment was noted in high stiffness hydrogels. In hydrogels with moderate stiffness, ones processed at lower temperature demonstrated better shape fidelity and cell proliferation over time. Analysis of gene expression of hASC encapsulated within the hydrogels showed that, while the GelMA matrix assisted in maintenance of stem cell phenotype (CD44), a higher matrix stiffness resulted in higher pro-inflammatory marker (ICAM1) and markers for cell-matrix interaction (ITGA1 and ITGA10). Analysis of constructs with ultrasonically patterned hASC showed that hydrogels processed at higher temperature possessed lower structural fidelity but resulted in more cell elongation and greater anisotropy over time. These findings demonstrate the significant impact of GelMA material formulation and processing conditions on the structural and functional properties of the hydrogels. The understanding of these material-process-structure-function interactions is critical toward optimizing the functional properties of GelMA hydrogels for different targeted applications.


Assuntos
Gelatina , Hidrogéis , Materiais Biocompatíveis , Humanos , Metacrilatos , Engenharia Tecidual
6.
Biofabrication ; 14(1)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34663761

RESUMO

Regenerative medicine approaches for massive craniomaxillofacial (CMF) bone defects face challenges associated with the scale of missing bone, the need for rapid graft-defect integration, and challenges related to inflammation and infection. Mineralized collagen scaffolds have been shown to promote mesenchymal stem cell osteogenesis due to their porous nature and material properties, but are mechanically weak, limiting surgical practicality. Previously, these scaffolds were combined with 3D-printed polycaprolactone (PCL) mesh to form a scaffold-mesh composite to increase strength and promote bone formation in sub-critical sized porcine ramus defects. Here, we compare the performance of mineralized collagen-PCL composites to the PCL mesh in a critical-sized porcine ramus defect model. While there were no differences in overall healing response between groups, our data demonstrated broadly variable metrics of healing regarding new bone infiltration and fibrous tissue formation. Abscesses were present surrounding some implants and PCL polymer was still present after 9-10 months of implantation. Overall, while there was limited successful healing, with 2 of 22 implants showed substantial levels of bone regeneration, and others demonstrating some form of new bone formation, the results suggest targeted improvements to improve repair of large animal models to more accurately represent CMF bone healing. Notably, strategies to increase osteogenesis throughout the implant, modulate the immune system to support repair, and employ shape-fitting tactics to avoid implant micromotion and resultant fibrosis. Improvements to the mineralized collagen scaffolds involve changes in pore size and shape to increase cell migration and osteogenesis and inclusion or delivery of factors to aid vascular ingrowth and bone regeneration.


Assuntos
Materiais Biocompatíveis , Alicerces Teciduais , Animais , Materiais Biocompatíveis/farmacologia , Regeneração Óssea , Colágeno/farmacologia , Osteogênese , Poliésteres , Suínos
7.
CRISPR J ; 3(5): 409-418, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33095051

RESUMO

The use of CRISPR-Cas and RNA-guided endonucleases has drastically changed research strategies for understanding and exploiting gene function, particularly for the generation of gene-edited animal models. This has resulted in an explosion in the number of gene-edited species, including highly biomedically relevant pig models. However, even with error-free DNA insertion or deletion, edited genes are occasionally not expressed and/or translated as expected. Therefore, there is a need to validate the expression outcomes gene modifications in vitro before investing in the costly generation of a gene-edited animal. Unfortunately, many gene targets are tissue specific and/or not expressed in cultured primary cells, making validation difficult without generating an animal. In this study, using pigs as a proof of concept, we show that CRISPR-dCas9 transcriptional activators can be used to validate functional transgene insertion in nonexpressing easily cultured cells such as fibroblasts. This is a tool that can be used across disciplines and animal species to save time and resources by verifying expected outcomes of gene edits before generating live animals.


Assuntos
Animais Geneticamente Modificados/genética , Proteína 9 Associada à CRISPR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes/métodos , RNA Guia de Cinetoplastídeos/metabolismo , Transativadores/metabolismo , Transgenes , Animais , Proteína 9 Associada à CRISPR/genética , Células Cultivadas , Expressão Gênica , Técnicas de Transferência Nuclear , RNA Guia de Cinetoplastídeos/genética , Suínos , Transativadores/genética
8.
Anim Reprod ; 15(3): 171-179, 2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34178139

RESUMO

The development of genetically modified livestock has been dependent on incremental technological advances such as embryo transfer, homologous recombination, and somatic cell nuclear transfer (SCNT). This development rate has increased exponentially with the advent of targeted gene modifiers such as zinc finger nucleases, TAL-effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR-Cas). CRISPR-Cas based systems in particular have broad applicability, and have low technical and economic barriers for their implementation. As a result, they are having, and will continue to have, a transformational impact in the field of gene editing in domestic animals. With these advances also comes the responsibility to properly apply this technology so it has a beneficial effect throughout all levels of society.

9.
Metabolomics ; 14(9): 113, 2018 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-30830365

RESUMO

INTRODUCTION: In the past 20+ years, several studies of bovine embryo production showed how the ratio of male to female embryos changes if embryos are made in vivo or in vitro. It is known that in in vitro systems, the sex ratio is in favor of males when there are high levels of glucose, and favors females when the principal energetic substrate is one other than glucose, like citrate. OBJECTIVES: The aim of this study was to evaluate the embryo metabolism during three important periods of in vitro development: the early development (from day 1 until day 3), the middle of culture (day 3 until day 5), and later development (day 5 until day 7). METHODS: To obtain this information we evaluated the spent medium from each time period by 1H NMR. RESULTS: Our results confirm that embryo metabolism is different between sexes. The new information obtained by identifies markers that we can use to predict the embryo sex. CONCLUSION: These results open a new, non-invasive method to evaluate sex of the embryos before the transfer. In the first period of embryo culture, valine concentration is good indicator (66.7% accurate), while in the last phase of culture, pyruvate depletion is the best marker (64% accurate) to evaluate the sex of the embryo.


Assuntos
Técnicas de Cultura Embrionária , Embrião de Mamíferos/metabolismo , Ressonância Magnética Nuclear Biomolecular , Animais , Bovinos , Feminino , Masculino
10.
Tissue Eng Part A ; 24(11-12): 943-954, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29264958

RESUMO

A tissue engineering approach to address craniofacial defects requires a biomaterial that balances macro-scale mechanical stiffness and strength with the micron-scale features that promote cell expansion and tissue biosynthesis. Such criteria are often in opposition, leading to suboptimal mechanical competence or bioactivity. We report the use of a multiscale composite biomaterial that integrates a polycaprolactone (PCL) reinforcement structure with a mineralized collagen-glycosaminoglycan scaffold to circumvent conventional tradeoffs between mechanics and bioactivity. The composite promotes activation of the canonical bone morphogenetic protein 2 (BMP-2) pathway and subsequent mineralization of adipose-derived stem cells in the absence of supplemental BMP-2 or osteogenic media. We subsequently examined new bone infill in the acellular composite, scaffold alone, or PCL support in 10 mm dia. ramus mandibular defects in Yorkshire pigs. We report an analytical approach to quantify radial, angular, and depth bone infill from micro-computed tomography data. The collagen-PCL composite showed improved overall infill, and significantly increased radial and angular bone infill versus the PCL cage alone. Bone infill was further enhanced in the composite for defects that penetrated the medullary cavity, suggesting recruitment of marrow-derived cells. These results indicate a multiscale mineralized collagen-PCL composite offers strategic advantages for regenerative repair of craniofacial bone defects.


Assuntos
Colágeno/química , Doenças Mandibulares/tratamento farmacológico , Poliésteres/química , Animais , Osso e Ossos/patologia , Doenças Mandibulares/metabolismo , Suínos , Cicatrização/efeitos dos fármacos
11.
Anim Biotechnol ; 28(4): 275-287, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-28267421

RESUMO

Bone is a plastic tissue with a large healing capability. However, extensive bone loss due to disease or trauma requires extreme therapy such as bone grafting or tissue-engineering applications. Presently, bone grafting is the gold standard for bone repair, but presents serious limitations including donor site morbidity, rejection, and limited tissue regeneration. The use of stem cells appears to be a means to overcome such limitations. Bone marrow mesenchymal stem cells (BMSC) have been the choice thus far for stem cell therapy for bone regeneration. However, adipose-derived stem cells (ASC) have similar immunophenotype, morphology, multilineage potential, and transcriptome compared to BMSC, and both types have demonstrated extensive osteogenic capacity both in vitro and in vivo in several species. The use of scaffolds in combination with stem cells and growth factors provides a valuable tool for guided bone regeneration, especially for complex anatomic defects. Before translation to human medicine, regenerative strategies must be developed in animal models to improve effectiveness and efficiency. The pig presents as a useful model due to similar macro- and microanatomy and favorable logistics of use. This review examines data that provides strong support for the clinical translation of the pig model for bone regeneration.


Assuntos
Regeneração Óssea , Transplante de Células-Tronco Mesenquimais , Suínos , Animais , Modelos Animais de Doenças , Humanos , Engenharia Tecidual , Alicerces Teciduais
12.
Anim Biotechnol ; 28(3): 198-210, 2017 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-28103141

RESUMO

In the past few years, new technologies have arisen that enable higher efficiency of gene editing. With the increase ease of using gene editing technologies, it is important to consider the best method for transferring new genetic material to livestock animals. Microinjection is a technique that has proven to be effective in mice but is less efficient in large livestock animals. Over the years, a variety of methods have been used for cloning as well as gene transfer including; nuclear transfer, sperm mediated gene transfer (SMGT), and liposome-mediated DNA transfer. This review looks at the different success rate of these methods and how they have evolved to become more efficient. As well as gene editing technologies, including Zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the most recent clustered regulatory interspaced short palindromic repeats (CRISPRs). Through the advancements in gene-editing technologies, generating transgenic animals is now more accessible and affordable. The goals of producing transgenic animals are to 1) increase our understanding of biology and biomedical science; 2) increase our ability to produce more efficient animals; and 3) produce disease resistant animals. ZFNs, TALENs, and CRISPRs combined with gene transfer methods increase the possibility of achieving these goals.


Assuntos
Animais Geneticamente Modificados/genética , Edição de Genes/métodos , Genoma/genética , Gado/genética , Animais , Sistemas CRISPR-Cas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...